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Abstract. This paper proposes a general method to investigate Feshbach resonances in atomic collisions
similar to Cs(6s) + Cs(6p) in the thermal or cold regime. In order to compute the predissociation widths
of the C1Πu(6s + 5d) bound vibrational levels of Cs2, coupled both with the (2)3Σ+

u (6s+ 6p) continuum
and with the (2)3Πu(6s + 5d) vibrational series, a Fourier grid method is implemented, with an optical
potential. A convenient way of optimizing the latter is proposed. A large number of resonances are found
and calculations of their cross-sections for stabilization into ground state molecules show that the rate may
be important. This confirms the interpretation of Lintz and Bouchiat [Phys. Rev. Lett. 80, 2570 (1998)]
who observed dimer formation in cell experiments. Possible generalization to the cold regime relies on the
possibility to tune the position of a resonance to coincide with the maximum of the collisional energy
distribution.

PACS. 33.80.Gj Diffuse spectra; predissociation, photodissociation – 34.10.+x General theories and models
of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic
and trajectory models, etc.) – 34.50.-s Scattering of atoms and molecules – 03.65.Ge Solutions of wave
equations: bound states – 02.70.Jn Collocation methods

1 Introduction

The formation of molecules via photoassociation in a cold
atomic sample has received much attention lately [1–4].
In the photoassociation reaction [5], two colliding alkali
atoms absorb a photon red-detuned relative to the res-
onance line, populating a bound vibrational level in an
excited molecular potential curve. This molecule then de-
cays by spontaneous emission, usually giving back a pair
of free atoms and therefore dissociating. It can be stabi-
lized into a long-lived ground-state molecule only in some
particular situations, where the branching ratio of bound-
bound transitions is non-negligible as compared to bound-
continuum transitions. Schemes to stabilize photoassoci-
ated molecules are therefore actively investigated.

One such scheme has been discussed recently for the
Cs2 molecule [6], and relies upon resonant coupling be-
tween two vibrational series in the excited state. In the
chosen example, a vibrational level close to the dissoci-
ation limit of the 0+

u (6s + 6p1/2) curve is populated via
photoassociation of two colliding ground state atoms, and
the population transferred to a vibrational level of the
narrower 0+

u (6s+6p3/2) curve, which has a better Franck-
Condon overlap with the bound levels of the ground state.
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The excited molecule can thus be stabilized by spon-
taneous emission. An obvious generalization of such a
scheme would be to excite directly one atom, and consider
a Feshbach resonance [7] in the scattering of a Cs(6s) +
Cs(6p1/2) pair, at energies above the (6s + 6p1/2) thresh-
old and below the (6s + 6p3/2) one, due to coupling
between the continuum level and a bound level in the
0+
u (6s + 6p3/2) channel. The scattering resonance might

then be stabilized by spontaneous emission towards the
ground state of the molecule. A general scheme for the
above mechanism is displayed in Figure 1.

A similar mechanism for dimer formation has long
been known by experimentalists working, at thermal en-
ergies, with cells containing alkali atoms in presence of
laser light: in the parity violation experiments of Bouchiat
et al. [8,9] the presence of Cs2 dimers [10] was interpreted
as a coupling between a continuum level corresponding
to a Cs(6s) + Cs(6p3/2) collision in a repulsive potential,
and bound levels in the well of excited molecular potential
curves correlated to the above-lying (6s+ 5d) dissociation
limit. The aim of the present paper is to propose a the-
oretical investigation of such resonances and their stabi-
lization by spontaneous emission, first at thermal energies
and then in the cold regime.

In fact, the study of Feshbach resonances in a cold
atom sample or in an atomic condensate is presently
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Fig. 1. General scheme of the formation of cold molecules by
Feshbach resonances process. (1) Population of an atom in the
excited state. Collisions between two atoms, one in the ground
state and one in an excited state. (2) Spontaneous emission
giving back two atoms in the ground state. (3) Population by
spontaneous emission of a bound vibrational level of the molec-
ular ground state.

a very active domain. However, most experimental and
theoretical papers are focussed on magnetically-induced
Feshbach resonances in collisions between two ground-
state atoms, the stabilization process occurring when the
magnetic field is modified [11–15]. Manipulation of Fes-
hbach resonances by a time-dependent magnetic field
has been theoretically investigated [16]. Optically-induced
Feshbach resonances (where the continuum state of two
ground-state colliding atoms is coupled by the light field
to a vibrational level of a photoassociated molecule) have
been observed by Fatemi et al. [17]. Feshbach resonances
in ultracold atom-diatom scattering have been investi-
gated by Forrey et al. [18,19]. The theoretical treatments
are using close-coupling calculations [11,20], generalizing
previous work on Feshbach resonances in molecular col-
lisions at thermal energies: the subject of Feshbach reso-
nances, and of predissociation of bound levels, has long
been studied in molecular dynamics, for diatomic sys-
tems [21] as well as for triatomic van der Waals molecules
[22,23]. Theoretical methods using optical potentials have
been later on extensively developed [24–26].

Recently, a new kind of numerical method, based on
Fourier grid expansion, has been developed for calcula-
tions of bound levels in diatomic molecules [27–30], and
proved to be very efficient for highly-excited vibrational
levels. It was generalized to the calculation of predissocia-
tion lifetimes by use of an optical potential [29,31,32]. In
the present work, we propose an implementation of this
approach to treat the formation of molecules by Feshbach
resonances in an excited electronic state. The novel aspect
relative to previous work lies upon the method chosen for
the convergence checks and upon the determination of the
wavefunctions.

The paper is organized as follows: in Section 2, we de-
scribe the numerical method to compute predissociation
widths using Fourier Grid Hamiltonian representation and
optical potential. This method is used in Section 3 in the
case of Cs2 dimers. In Section 4, we derive a formula giv-

ing an estimation of the rate of formation of molecules
stabilized by spontaneous emission, relying upon knowl-
edge of the predissociation width and spontaneous emis-
sion probability. In Section 5, we propose an application
to the formation rate of Cs2 molecules in a cell experi-
ment at thermal energy. Further developments at ultra-
cold energies are discussed in Section 6, and Section 7 is
the conclusion.

2 The Fourier grid Hamiltonian
representation (FGHR) and the optical
potential method

The numerical method to solve the time-independent ra-
dial Schrödinger equation, known as Fourier Grid Hamil-
tonian representation (FGHR), has already been de-
scribed in detail in several papers [27–29,33]. In the
present work, we shall recall briefly its main lines and
focus on its application when the Hamiltonian contains
an optical potential. We propose a method to improve the
optimization procedure for the optical potential.

2.1 The FGHR method

In the Fourier Grid method, we define a discretized
basis set of N plane waves exp(i2πkR/L), k =
−(N/2−1), ..., 0, ..., N/2. L is the length of the grid in the
position coordinate R and N the number of points. In a
single channel problem, the wavefunctions for bound levels
are represented by N expansion coefficients and the oper-
ators by N × N matrices. Diagonalization of the Hamil-
tonian matrix yields both the N eigenvalues and the N
associated eigenvectors of the problem. Numerical checks
must be performed to optimize the choice of the parame-
ters L and N . One of the main advantages of the method
is that it can be easily extended to many-closed-channel
problems, the solution of a set of p coupled Schrödinger
equation being reduced to diagonalization of a pN × pN
matrix.

Moreover, in order to include open channels, where the
continuum wavefunction is extending beyond the edge of
any finite grid, the introduction of a complex absorbing
potential, localized at the end of the grid to avoid unphys-
ical reflections, is a very powerful numerical device [34].

As an example of two closed channels and one open
channel, we consider two attractive potential curves V1(R)
and V3(R) coupled to a repulsive potential V2(R) by in-
teraction W12(R) and W23(R) respectively. R is the in-
ternuclear distance. In the present work we consider no
rotational coupling effect, so that in the subspace of given
total angular momentum J the Hamiltonian matrix is:

H = T + V =

T1 0 0
0 T3 0
0 0 T2

+

 V1 0 W12

0 V3 W23

W12 W23 V2 − iVopt


(1)
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where T = −~2

2µ ( d2

dR2 ) + ~J(J+1)
2µR2 and V are respectively

the kinetic energy and potential operator and µ the re-
duced mass of the system. We assume that there is no
coupling between the 2 attractive potentials, and consider
a diabatic representation where the non-diagonal matrix
elements of the kinetic energy operator can be neglected.
−iVopt is the optical potential, that will be discussed be-
low. Because of this complex term in the Hamiltonian
matrix, diagonalization yields 3N complex eigenvalues ex-
pressed as:

ε(v, J) = Ev,J − i
Γv,J

2
(2)

where Ev,J and Γv,J are respectively the position and
width of the vibrational level v with rotational momen-
tum J . The method is easy to implement and can be very
accurate. The delicate part however is the implementa-
tion of the optical potential, for which the parameters
(analytical expression, position, amplitude, width) must
be optimized through numerical checks described below.

2.2 Choice of an optical potential

In previous papers computing resonances within an opti-
cal potential approach [24–26] and making use of a dis-
crete variable representation [29,31], the authors studied
the stability and the convergence of the computed widths
with respect to the size L, number of points N of the nu-
merical grid and the parameters of the optical potential
(position, amplitude). In the present work we propose to
add a further check studying the shape of the vibrational
wavefunctions and of their Fourier transform. The latter
procedure is made possible thanks to the FGHR method
which provides wavefunctions both in position represen-
tation and in momentum representation. This allows a
precise check of the wavefunction of a resonance, defined
as a Siegert state in scattering theory [35].

Although the predissociation of a molecule is consid-
ering at least two channels, we shall first consider one
channel scattering in order to define the physical concepts
and present the optimization of an optical potential in a
pedagogical way. Let us consider the radial Schrödinger
equation describing the relative motion of two atoms in
an interaction potential U(R) with angular momentum l:

[
d2

dr2
− l(l+ 1)

r2
− 2µ
~2
U(R) + k2

]
yl,k(R) = 0 (3)

~k is the momentum related to the scattering energy E by
E = ~2k2/2µ. We assume U(R) → 0 as R → ∞, yl,k(R)
is the wavefunction for the l partial wave.

The asymptotic solution yl,k(R) of equation (3) can
be developed over the ingoing and outgoing plane waves
which are solution of the radial equation for a free

particle as

yl,k(R) −→
R→∞

fl(k) exp
[
− i
(
kR− l π

2

)]
− f∗l (k) exp

[
i
(
kR− l π

2

)]
. (4)

The expansion coefficients fl(k) and f∗l (k) being the Jost
functions, the scattering matrix S is defined as:

Sl(k) =
f∗l (k)
fl(k)

· (5)

Resonances can be found as poles of the S matrix by con-
sidering complex values of the momentum k. From equa-
tion (5), such poles are found at zeros of the Jost function
fl(k), where the wavefunction yl,k(R) becomes a purely
outgoing wave

yl,k(R) −→
R→∞

−f∗l (k) exp
[
i
(
kR− l π

2

)]
. (6)

In such a definition, bound states are associated with ze-
ros of the Jost function fl(k) for k varying on the positive
imaginary axis where the outgoing wave exp[i(kR− lπ/2)]
becomes an exponentially decreasing function of the in-
ternuclear distance R. Resonances are associated with ze-
ros of the Jost function for k varying in the lower half
complex plane. Therefore, they correspond to a diverging
outgoing wave well-known as Siegert state. The use of an
optical potential solves the difficulty with their normaliza-
tion. By introducing a dispersive term in the equation, it
is possible to absorb the wavefunctions in the range where
the complex potential is located. The solutions being ex-
ponentially decreasing at the very end of the grid, they
become normalizable [24]. This is particularly interesting
since continuum wavefunctions may be computed with the
same accuracy as bound vibrational wavefunctions.

Therefore, we have to optimize an optical potential
by ensuring that the wavefunction associated to a reso-
nance becomes a purely outgoing wave. This can easily be
checked by visualizing the Fourier transform of this wave-
function. We have illustrated this procedure by numerical
calculations reported in Figure 2. Considering continuum
levels at energy ∼ 10−4 a.u. above the dissociation limit
of a Lennard-Jones potential V (R) = C(A/R12 −B/R6),
where A = 6 and B = 12, C = 3 × 10−8 a.u., we have
drawn the wavefunctions both in position and in mo-
mentum representation. When there is no optical poten-
tial (row (a)), the wavefunction is a standing wave rep-
resented by two symmetrical narrow peaks (+k,−k) in
the momentum representation. When the optical potential
is well-optimized (row (c)), the wavefunction correspond-
ing to a Siegert state displays an exponentially decreasing
behavior at large distances, due to the strongly absorb-
ing condition at the very end of the grid. In its Fourier
transform, the peak corresponding to the ingoing wave
has totally disappeared. In contrast, if the optimization
is not satisfactory (row (b)), the incoming component is
attenuated but not totally suppressed. The wavefunction
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Fig. 2. Examples of waves functions (left) and their Fourier
transform (right) computed with the Fourier grid method in
the case of levels located above the dissociation limit of a
Lennard Jones (12,6) potential (see text). Row (a) represents
wavefunctions computed without optical potential. Row (b)
shows the wavefunction for the same energy as previously but
with an ill-adapted optical potential: the incoming wave is at-
tenuated but not totally suppressed. Row (c) shows a wave-
function computed with a well-adapted optical potential, and
representing a pure Siegert state. Note the exponentially de-
creasing long range behaviour and the total suppression of the
ingoing wave.

displays some residual oscillations due to unphysical re-
flection at the edge of the grid, as well as an exponentially
diverging behavior at large distances.

We may conclude that the suppression of the peak at
k < 0 in the Fourier transform appears as a very conve-
nient convergence check. In the absence of optical poten-
tial, a reduction of the grid step for given L results in a
higher density of continuum levels, with no improvement
for the accuracy of the results. On the other hand, with
an optical potential we can identify stable levels above the
dissociation limit and the acurracy in the computed posi-
tion and width improves when increasing the number of
grid points.

Practically, we add this supplementary check to the
usual requirements for a “good” optical potential already
described in references [25,29], namely the location at a
distance R ∼ R0 far enough in the asymptotic region in or-
der to avoid perturbation in the physical interaction area
and the choice of a smooth variation of Vopt(R) to avoid
unphysical reflections. The best choice for the function
Vopt(R) is well-analysed in the article of Vibók and Balint-
Kurti [34], from where we took

Vopt = A5Nopt exp
( −2Lopt

R−Ropt

)
, (7)

with A5 = 0.006 a.u., Lopt = 3 a.u. The optical potential
starts at a distance Ropt which we have chosen as Ropt =
L− Lopt for a grid of length L.

We did verify that the use of a quadratic potential
gives the same result. In the following we shall consider
reactions where the angular momentum is conserved, so
that l = J .

3 Application to the predissociation
of the C1Πu(6s + 5d) state of the Cs2 dimers

A very efficient and long known [36,37] predissociation
scheme of the Cs2 dimers occurs for the rovibrational lev-
els of the attractive C1Πu(6s+ 5d) state which is coupled
via spin-orbit coupling to the dissociative (2)3Σ+

u (6s+6p)
state. The inverse reaction is a Feshbach resonance in the
scattering of a ground state atom and an excited one in
the (2)3Σ+

u (6s+ 6p) potential:

Cs(6s) + Cs(6p) +E → Cs∗2((2)3Σ+
u (6s+ 6p))(E, l = J)

→ Cs∗2(C1Πu(6s+ 5d))(v, J) (8)

which can be stabilized by spontaneous emission

Cs∗2(C1Πu(6s+ 5d), v, J)→
Cs2(X1Σ+

g (6s+ 6s)v”, J”) + hν. (9)

The energy origin is taken at the (6s + 6p) dissociation
limit. This reaction at room temperature has been ob-
served by Bouchiat and Lintz as an efficient channel for
dimer formation in their parity violation experiment [10].

We have applied the previous method to numerical cal-
culations of the predissociation effect, eventually consid-
ering a third channel, (2)3Πu(6s + 5d) also coupled to
(2)3Σ+

u (6s + 6p), so that in the Hamiltonian H in equa-
tion (1) the potentials V1(R), V2(R) and V3(R) corre-
spond respectively to the electronic states C1Πu(6s+5d),
(2)3Σ+

u (6s+ 6p) and (2)3Πu(6s+ 5d). We have used the
Hund case (c) adiabatic potentials from Aubert-Frécon
et al. [38], which are computed up to R = 140 a.u. We
found a few discrepancies between those curves and the
earlier calculations of Spies and Meyer [39], which are
limited to distances R ≤ 30 a.u. In the latter case, in
contrast with the curves computed by the same authors
for the 6s + 6p manifold, the matching with long range
asymptotic curves, computed for instance from the mul-
tipole coefficients of Marinescu and Dalgarno [40] is not
easy. Details will be given in a forthcoming publication.
In order to deal with diabatic states, we performed a dia-
batization procedure of the Hund case (c) curves and we
modelled the spin-orbit interaction by a Gaussian function
localized at the crossing point of the potentials

W (R) = Wint exp
(
− (R −Rint)2

ω2

)
(10)

where Wint is the interaction strength equal to half the
splitting between the adiabatic potentials. Rint is the po-
sition of the crossing point and ω is the width of the Gaus-
sian interaction. The parameters in the model are chosen
so that when diagonalizing the diabatic matrix V(R) in
equation (1), we get back the adiabatic curves. The opti-
mized parameters are Wint = 1.75×10−4 a.u., ω = 0.3 a.u.
and Rint = 9.7 a.u. for W12(R) and Wint = 3.5×10−4 a.u.,
ω = 0.6 a.u. and Rint = 11.6 a.u., for W23(R). The three
diabatic potentials are represented in Figure 3, while the
coupling terms are displayed in Figure 4. We put the
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Fig. 3. Diabatic potentials V1(R), V2(R) and V3(R) in the case
of cesium dimer. The C1Πu(6s+5d) and (2)3Πu(6s+5d) states
predissociate through the dissociative (2)3Σ+

u (6s + 6p) state.
The picture also shows the formation scheme for molecules in
the ground X1Σ+

g (6s+6s) state by spontaneous emission via a
Feshbach resonance due to the spin-orbit interaction between
the excited electronic states.
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Fig. 4. Representation of the coupling terms, modelized by
a Gaussian curve (see Eq. (10) in text). Solid line: interaction
W12(R) between the C1Πu and the (2)3Σ+

u (6s+6p) potentials.
Dashed line; interaction W23(R) between the (2)3Πu(6s+ 5d)
and the (2)3Σ+

u (6s+ 6p) potentials.

absorbing potential −iVopt on the open channel, at a dis-
tanceRopt = 30 a.u., in a region where the (2)3Σ+

u (6s+6p)
curve has reached its dissociation limit. We first have made
two channel calculations considering W23(R) = 0. The op-
timization of the optical potential follows the method de-
scribed in the preceeding section, a typical example of a
resonant wavefunction being represented in Figure 5.

The energies and widths for the levels of the C1Πu(6s+
5d) vibrational series, predissociated by the (2)3Σ+

u (6s+
6p) channel, have been computed for various values of
the grid length L, and are displayed in Figure 6. The
widths display an oscillatory pattern characteristic of such
molecular dynamics, as discussed by Lefebvre-Brion and
Field [21]. When the energy E is varying, the overlap inte-
gral between the bound and the continuum wavefunction
is oscillating due to the variation of their relative phase.

Fig. 5. Representation of the wavefunction associated with
the 17th predissociated vibrational level of the C1Πu state in
a two state model. The picture (a) shows the component on
the |C1Πu〉 state and the picture (b) shows the component
on the dissociative |3Σ+

u 〉 state. The first is a vibrational level
whereas the second is a continuum state with a pure diver-
gent behavior. The criterion based on the shape of the wave
function and its Fourier transform is equivalent to the tests of
Monnerville et al. [29], indeed with the use of the same optical
potential,we check that the widths have converged by increas-
ing the length L of the numerical grid. Picture (c) shows the
total wave function.

Fig. 6. Positions and widths for the C1Πu vibrational levels
predissociated by the 3Σ+

u (6s+ 6p) state. Values are reported
for two choices of the grid length, showing the stability of the
results. Diamonds show values for intermediate grid length for
two levels which are not really converged. For these two levels,
stability can not be reached because they are located flush with
the avoided crossing of the potentials and are very strongly
perturbated by the interaction.

The convergence is rapid, the results being equivalent for
grid lengths L = 30, 50 and 70 a.u., apart from a markedly
predissociated level at E = 12 810 cm−1 for which the con-
tinuum component in the wavefunction is so important
that a grid of length L > 70 a.u. is required.
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Fig. 7. Positions and widths for the 3Πu(6s+ 5d) vibrational
levels predissociated by the 3Σ+

u (6s+ 6p) continuum.

Fig. 8. Positions and widths for the C1Πu vibrational levels
in a 3-channel calculation including both the 3Σu(6s+6p) and
the 3Πu(6s+ 5d) channels. The shape of the peak in Figure 7
is recalled in the broken curve.

We have also computed, within a two-channel model,
the predissociation widths for the (2)3Πu levels predis-
sociated by the (2)3Σ+

u (6s + 6p) channel (see Fig. 7). In
the latter case, the dynamics is different: a broad peak is
present around 13 700 cm−1, and the energy variation of
the predisssociation width does not display the oscillat-
ing pattern discussed in the previous case. The qualita-
tive difference between Figures 6 and 7 can be explained
by the different energy dependence of the overlap inte-
grals between the continuum function at energy E and
bound functions in the two potentials. Indeed, the poten-
tial C1Πu(6s+ 5d) is less deep than the (2)3Πu(6s+ 5d)
potential. These overlap integrals have also been calcu-
lated by Kimura et al. [41] who show clearly the different
energy variation.

Next we have performed three-channel calculations, for
which the results are displayed in Figure 8. The patterns of
the two preceeding figures are mixed, with oscillations as
in Figure 6 and some large values of the width in the region
of the broad peak in Figure 7. However, it is remarkable

that when we take into account the (2)3Πu(6s+5d) chan-
nel, the widths are reduced by one order of magnitude as
compared to Figure 6. This shows the importance of intro-
ducing this third channel in the treatment. The qualitative
explanation is easy: for the lowest energies, the coupling
with the (2)3Πu(6s+5d) channel is weak, as is manifested
in Figure 7, so that the resonant structure is very similar
to the 2-state calculations of Figure 6, the effect of third
channel being only manifested by a decrease in the life-
times. Above the energy E = 13 200 cm−1, the coupling
with the (2)3Πu(6s+5d) channel becomes important, and
large predissociation lifetimes are found in the region of
the peak in Figure 6. Interference effects between the two
predissociated series have also been observed in the calcu-
lations of Kimura et al. [41]

The validity of the present model is restricted to non
overlapping resonances: it can be easily verified that the
computed widths are smaller than the level spacing. In
our case, the ratio between the spacing and the width is
always larger than 5.

In a model where no rotational coupling is introduced,
the calculations can be performed for various values of the
angular momentum J , by considering the J dependence
of the potentials and kinetic energy, yielding a set of ener-
gies and widths Ev,J and Γv,J . We have checked that the
J-dependence of the results is weak, the widths Γv,J vary-
ing by less than 10% when the rotational number increases
from 0 to 50.

4 Molecular formation rate by stabilization
of Feshbach resonances in an excited sate

4.1 general expression for the rate coefficient

The predissociation of the bound rovibrational levels de-
scribed in the previous section is the inverse process of a
Feshbach resonance in the scattering of two Cs(6s) + Cs
(6p) atoms at a collision energy E, for an angular momen-
tum J . The analytic expression for the elastic scattering
matrix S in the case of an isolated resonance is [7]

Svii(E, J) = F vii

(
1− iΓv,J

E −Ev,J + i
2Γv,J

)
, (11)

where E is the initial collisional energy, Ev,J and Γv,J re-
spectively the position and the width of a resonance, and
F vii is a phase factor, such that |F vii|

2 = 1. The widths Γv
that we have computed range from 0 to 15 cm−1, cor-
responding to lifetimes between 0.35 ps and ∞. When
the radiative lifetime is much larger than the predisso-
ciation lifetime, the spontaneous emission to the ground
electronic state X1Σ+

g (6s + 6s) can be introduced phe-
nomenologically by a small additive term to the imag-
inary part of the complex energy, which now becomes
Ev,J − iΓv,J/2 − iγv,J/2, with γv,J � Γv,J [42]. The S
matrix element for scattering in the initial channel be-
comes:

Svii(E, J) = F vii

(
1− iΓv,J

E −Ev,J + i
2γv,J + i

2Γv,J

)
· (12)
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The squared modulus of this matrix element is no longer
1 but,

|Svii(E, J)|2 =
(E −Ev,J )2 + (γv,J − Γv,J)2/4
(E −Ev,J )2 + (γv,J + Γv,J)2/4

< 1. (13)

The fact that in equation (13) |S2
ii|2 < 1 manifests a flux

loss in the scattering channel. When the spontaneous de-
cay is preferentially populating bound levels of the ground
electronic state, this flux loss will give the rate of forma-
tion of ground state molecules. In the other cases, it will
give an upper limit of the latter quantity. Writing the flux
conservation condition as

|Svii(E, J)|2 + |Svdecay(E, J)|2 = 1, (14)

yields, when decay to the continuum of the ground state
may be neglected, a probability for the formation of stable
molecules:

|Svdecay(E, J)|2 =
γv,JΓv,J

(E −Ev,J )2 +
(
γv,J+Γv,J

2

)2 · (15)

We can thus define a stabilization cross-section as:

σvdecay(E) =
π

2µE

∞∑
J=0

(2J + 1)|Svdecay(E, J)|2, (16)

from which the rate coefficient at a temperature T for the
molecular formation process is obtained by averaging over
the velocity distribution f(w, T ),

K(v, T ) =
∫ ∞

0

σvdecay(E)wf(w, T )dw. (17)

In equation (17), w is the modulus of the relative velocity
of the colliding particles. For cell experiments, we consider
a Maxwellian velocity distribution [43]

fMax(w, T ) =
(

2µ3

πk3
BT

3

) 1
2

w2 exp
(
− µw2

2kBT

)
, (18)

where kB is the Boltzman constant. Introducing the
change of variable: E = (1/2)µw2, wdw = dE/µ and
combining equations (16, 18), to equation (17), the rate of
formation of stable molecules, at a temperature T , from
a given resonance v is obtained as a sum over the energy-
averaged decay probabilities for the various partial waves:

K(v, T ) =
1

hQT

∞∑
J=0

(2J + 1)

×
∫ ∞

0

|Svdecay(E, J)|2 exp
(
− E

kBT

)
dE (19)

where we have introduced the partition function QT =
(2πµkBT/h

2)3/2.
At thermal energies, the resonances are usually very

narrow in comparison with kBT , so that the exponen-
tial term can be taken out of the integral. Due to the

Lorentzian shape of the probability in equation (15), the
remaining integration is analytical, and one obtains the
total rate of formation of molecules by summation over
the various resonances as:

Ktot(T )∼
∑
v

1
hQT

∞∑
J=0

(2J+1)
2πγv,JΓv,J
γv,J + Γv,J

exp
(
− Ev,J
kBT

)
.

(20)

Note that under the condition γv,J � Γv,J , the formation
rate is controlled by the spontaneous emission probability
and by the energy distribution of the resonances. This sim-
ple analytical formula is no longer valid in the cold regime,
where numerical calculations have to be performed.

The width γv,J that we have phenomenologically intro-
duced is related to the probability of spontaneous emission
from one rovibrational level v, J in the excited molecular
state Λ to all possible rovibrational levels v′′, J ′′ in the
ground electronic state Λ′′. The Einstein coefficient for
transition to a particular v′′, J ′′ level may be written [44]:

AvJ→v′′J′′ =
1

4πε0
64π4

3hc3
ν3
vJ→v′′J′′DΛvJ→Λ′′v′′J′′ . (21)

In equation (21) νvJ→v′′J′′ is the frequency of the transi-
tion, and

DΛvJ→Λ′′v′′J′′ =
∑
M

∑
M′′

|〈ΛvJM |µ(R)|Λ′′v′′J ′′M ′′〉|2.

(22)

µ(R) is the electric dipole moment, and can be expressed
from its three components µx, µy and µz as tensor of
rank 1:

µ
(1)
±1(R) =

µx(R)± iµy(R)√
2

, (23)

µ
(1)
0 (R) = µz(R). (24)

where the three subscripts x, y, z denote the components
of the dipole vector in the molecular frame.

For a simple estimation, we shall neglect the
R-dependence of the dipole moment [21], and assume that
the J distribution is narrow enough to neglect the varia-
tion of the radial wavefunction with the rotational quan-
tum number [45]. The dipole integral in equation (22) can
then be separated into radial part and angular part, and
after summation over the J ′′ quantum number in the final
state, the J number vanishes, so that after some algebraic
manipulation we have:∑

J”

AvJ→v′′J′′ ∼ Av→v′′ (25)

≈ 1
4πε0

64π4

3h
ν3

c3
|〈v|µ|v′′〉|2(2− δΛ0δΛ′′0), (26)

where δΛ0 = 1 for Σ states, and 0 otherwise.
The natural width due to spontaneous emission is then

found J-independent and reads

γv ∼ ~
∑
v′′

Av′→v′′ . (27)
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5 Application to an estimation
of the formation rate of ground state Cs2

molecules at thermal energies

We focus on the excited molecules in the C1Πu(6s +
5d) electronic state which decay by spontaneous emis-
sion into the ground X1Σ+

g (6s + 6s) state. Due to se-
lection rules for Π−Σ transition, only the ±1 compo-
nents of the tensor are contributing to equation (21).
Numerical calculations show that the probability of de-
cay by spontaneous emission into the continuum of the
X1Σ+

g (6s+ 6s) state is close to zero. Because of selection
rules, the Cs 6s→ 5d transition is forbidden. The molec-
ular C1Πu(6s + 5d) → X1Σ+

g (6s + 6s) transition dipole
moment is presently unknown. Earlier spectroscopic stud-
ies of the C1Πu(6s + 5d) spectra [46] obtained by popu-
lation from the ground state demonstrate that it is easy
to transfer population. To estimate the molecular rate,
we have taken the only known dipole moment [39] for a
similar transition ((2)3Πg(6s+ 5d)→ a3Σ+

u (6s+ 6s)) av-
eraged over the range of the rovibrational levels of the
C1Πu(6s+5d) state providing a constant dipolar moment
of the order of 1 au which can be taken out of the integral
in equation (22) (by comparison, the dipole moment for
the 6s–6p atomic transition is 3.236 a.u.) The calculation
of the natural width is then easily done.

The sum of the overlap integrals between one excited
vibrational state v and the ground vibrational states v′′
is numerically found equal to one, justifying a posteriori
the hypothesis neglecting bound→ continuum transitions.
We can safely assume that the natural width due to spon-
taneous emission is constant for all the vibrational levels
(γv = γ), yielding a natural width of 6.6×10−5 cm−1. For
numerical convenience, we compute positions and widths
of the resonances for a given J number and we expressed
a total rate (that is summed over all the resonances) for
each J . This is equivalent to performing in equation (20)
the summation over v before the summation over J

Ktot(T ) =
∞∑
J=0

κtot
J (28)

κtot
J (T ) =

∑
v

1
hQT

(2J + 1)
2πγΓv,J
γ + Γv,J

exp
(
− Ev,J
kBT

)
·

(29)

The J-dependence of the partial rate κtot
J (T ) at room tem-

perature is displayed below in Figure 9, in a model using
for the widths Γv,J numerical results from two-channel cal-
culations. The derivation in Section 4 is considering only
(2)3Σ+

u (6s + 6p) continuum and C1Πu(6s + 5d) bound
levels. We then find, for a temperature of 300 K, a total
molecular formation rate of 3×10−18×〈d〉2 cm3 s−1, where
〈d〉2 is the actual value of the dipole moment in atomic
units. This illustrates the possible efficiency of such a
scheme at room temperature. The rate is substantially im-
proved by the fact that at room temperature the Maxwell
distribution is very broad and many resonances (up to
100) are populated and contribute. On the other hand,

Fig. 9. Molecular partial formation rate κJ(T ) (see Eq. (29))
in cm3s−1 versus the rotational quantum number J for T =
300 K.

because of the repulsive character of the (2)3Σ+
u (6s+ 6p)

curve and of the location of the minimum of the C curve
the rate decreases dramatically as the temperature of the
vapor decrease: the rate is 4 order of magnitude smaller
for a temperature of 100 K, and is close to zero at 50 K.
This is due to the fact that the resonances are located
in the exponentially decreasing range of the Maxwellian
velocity distribution which tends quickly to zero as the
temperature tends to zero.

The number of molecules formed per second will de-
pend upon the density of atoms in the ground and in the
excited state, and of the volume of the cell. Considering
typical densities of 1014 cm−3 and 1010 cm−3 for atoms in
the ground and in the excited state respectively and cell
volume of 1 cm3, the number of molecules formed by spon-
taneous emission reaches 3 × 106 s−1 with our arbitrary
choice for the dipole moment.

We should note that the rate computed using the nu-
merical values obtained in a three-channel calculation do
not differ substantially from the previous ones. Indeed, the
rate is only reduced by 20% for a temperature of 300 K.
This can be explained from formula (20) due to the small
value of γv,J as compared to Γv,J .

6 Possible application to cold collisions

In the cold regime, we should first look for situations as in
Figure 1 where in the initial continuum channel the poten-
tial is attractive at long range, and where in the predisso-
ciated channel the potential is deep enough so that bound
levels may exist at energy E ≈ kBT . A similar situation
is offered by considering a collision Cs(6s) + Cs(6p1/2)
along the 0+

u (6s+ 6p1/2) potential curve and studying the
possibility of a Feshbach resonance with a bound level in
the Cs2 0+

u (6s+ 6p3/2) curve. The strong coupling of the
two channels, also present in the Rb2 0+

u (5s + 5p1/2,3/2)
case, gives rise to strong predissociation effects: the com-
puted widths [32] close to the p1/2 asymptote are typically
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of the same order of magnitude as the widths calculated
in Section 5, varying from 2.5 cm−1 for 85Rb2, 0.8 cm−1

for 87Rb2 and 0.15 cm−1 for Cs2. Once populated, the
vibrational levels in the 0+

u (6s + 6p3/2) curve have been
shown to decay efficiently into bound levels of the ground
state [6], so that the stabilization by spontaneous emission
would be an efficient process. However, in the cold regime
the very existence of a Feshbach resonance is problematic:
the Maxwell distribution becomes very narrow, and be-
low a temperature of a few kelvins is even narrower than
the spacing between two resonances. Finding a resonance
located exactly at the peak in the energy distribution is
purely fortuitous: for instance, the lower resonance in the
Cs2 0+

u (6s + 6p3/2) channel is located ≈ 2 cm−1 above
the (6s+ 6p1/2) threshold, and cannot be reached during
Cs(6s) + Cs(6p1/2) collisions at ultracold temperatures.
The first condition would be to design a process allowing
to control the position of the resonance, for instance via
laser coupling [47–49]. If this can be achieved, the rate in
the previous section should be computed numerically, the
analytical approximation on the integral over energy dis-
tribution being no longer justified. We may predict how-
ever that going to low temperatures, the limitation in the
number of resonances and also in the number of partial
waves (factor J2

max) is decreasing the formation rate. In
contrast, the geometrical factor E−1 in equation (16) in-
creases the rate, so that the balance between the two ef-
fects suggests a substantial increase of the formation rate.

The advantage of such a procedure compared to res-
onances in the ground state controlled by magnetic field
is that the spontaneous emission is populating low vibra-
tional levels of the ground electronic state, so that the
stable molecules are produced vibrationally cold.

7 Conclusion

In the present work we have proposed a theoretical method
to compute predissociation widths and Feshbach reso-
nances of excited alkali dimers in the framework of a
Fourier Grid representation with optical potential. We also
have presented a phenomenological treatment of the stabi-
lization of such Feshbach resonances by spontaneous emis-
sion.

Calculations for the predissociation of the Cs2

C1Πu(6s + 5d) vibrational levels by the 3Σu(6s + 6p)
continuum show that the interpretation of dimer forma-
tion, observed in the experiment of Lintz and Bouchiat,
by Feshbach resonances is qualitatively correct. The pairs
of atoms Cs(6s) + Cs(6p) colliding along the 3Σu(6s+6p)
potential are likely form a C1Πu(6s+ 5d) resonance. The
latter having a favourable Franck Condon overlap with
the bound levels of the ground state are good candidates
for stabilization via spontaneous emission. For a quantita-
tive comparison, values of the electronic transition dipole
moment between the two molecular states are necessary.

More elaborate calculations would necessitate a more
refined treatment of the spontaneous emission step. Be-
sides, we have considered a constant population of excited
atoms due to the presence of a cw laser and this coupling

with light should also be introduced in our model. It might
be interesting to consider generalization of such a process
to cold collisions, provided experiments could be easily im-
plemented to tune the position of the resonances with laser
light. The advantage of the proposed scheme is twofold.
First, in contrast with photoassociation many atoms can
be excited with resonant light, creating a large number
of colliding pairs A(ns) + A(np) likely to contribute to
the resonance. Second, in contrast with the Feshbach res-
onances in the ground state tuned by magnetic field the
present scheme can transfer population to the lower vi-
brational levels of the ground state.

Discussions with M.A. Bouchiat and C. Dion are gratefully ac-
knowledged. The authors are grateful to M. Aubert-Frécon and
to W. Meyer for making their computed potential curves avail-
able and to C. Amiot for indicating spectroscopic references.
P.P. wishes to thank E. Luc-Koenig and M. Millet for useful
references and comments. F.M.S. thanks ITAMP and its staff
for hospitality in Cambridge where this paper was partly writ-
ten. IDRIS computing center (France) where the calculations
were performed, is gratefully acknowledged.
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